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In this paper a numerical model for the viscous flow past a cylinder in a rotating 
frame is discussed when both the Rossby number Ro and Ekman number E are small. 
The results of this model are analysed and compared to an inviscid study by Page 
(1987) applicable in the limit E + 0 with Ro = O(Et) .  The detailed structure of the 
separated flow is also examined and compared to the proposals for the higher-order 
flow in L& layers in Page (1987) which were based, in part, on the theory of Smith 
(1979, 1985) for the non-rotating flow past bluff bodies. Some discrepancies between 
this theory and the numerical results are noted. 

1. Introduction 
The flow of a homogeneous, incompressible, viscous fluid past a right circular 

cylinder forms one of the classical problems of fluid dynamics. It has been studied by 
numerous workers since the latter half of the last century and still presents a 
challenge despite its apparent simplicity. A wealth of literature exists on this subject 
as well as several review articles, for example Morkovin (1964) and Berger & Wille 
(1972). When the flow takes place in a homogeneous fluid relative to a rotating frame 
of reference, a new series of flow phenomena emerge. Owing to  the importance of 
background rotation on geophysical motions, such a system is of interest to 
meteorologists and oceanographers, and others studying topographic effects in 
geophysical flow fields. 

The first experimental data for the flow past a cylinder in a rotating frame was 
obtained by Boyer (1970) and this work identified three main flow regimes, namely : 
fully attached flow in which the flow pattern closely approximates that of a potential 
flow solution; a steady double-eddy regime in which a system of two eddies forms on 
the downstream side of the cylinder, and finally, an eddy-shedding regime similar to 
the K a r m b  vortex street flow in the non-rotating case. Between these three regimes 
are two transition regions in which the character of the flow alters gradually between 
that of the neighbouring regimes. The double-eddy system in Boyer’s second regime 
is asymmetric with the larger eddy remaining attached to the cylinder and the 
smaller eddy lying slightly away from the cylinder. This asymmetry is not observed 
in the non-rotating flow experiments (and is not present in the parameter regime 
considered in the present study). Boyer & Davies (1982) completed a further and 
more extensive experimental study, which included investigation of flows on a p- 
plane and detailed measurements of the length of the eddy systems as a function of 
the flow parameters. 

Theoretical studies have been carried out by Barcilon (1970) and Walker & 
Stewartson (1972) for the case when both the Rossby number Ro and the Ekman 
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number E are small. In the latter study, Walker & Stewartson predicted that 
boundary-layer separation for the steady flow is dependent on a single parameter 
h = Ro/2Ef and would occur for h 2 !j, using the results from studies of a similar 
problem in magnetohydrodynamics (Leibovich 1967 ; Buckmaster 1969. 1971). 

Mcrkine & Rolan (1979) derived the equations for the flow in the Ea layer in a 
similar manner to Walker & Stewartson (1972) and integrated these numerically. 
Their equations included an additional higher-order term which causes asymmetry 
in the flow with respect to the undisturbed uniform upstream flow. This term was 
included in an attempt to explain the observed asymmetry of Boyer’s (1970) 
experiments. Merkine & Solan also derived an identical separation criterion to that 
of Walker & Stewartson. 

Later work by Page (1985) examined the Ei-layer flow in detail for h < i. 
Following on from Buckmaster (1971), this study showed that for 0 < h < a the flow 
is fully attached and regular a t  thc rear stagnation point, but for f < A < !j the flow 
develops a singularity near the rear stagnation point and the boundary layer splits 
into steady viscous and inviscid regions there. Page & Cowley (1988) extended 
this work, showing that the boundary-layer structure near the stagnation point for 
2 < h < f may be described in terms of three asymptotic regions; two inviscid 
and one viscous. 

In a numerical study of the time-varying, viscous, nonlinear flow Matsuura & 
Yamagata (1985) compared their results for Ro < 1 and E < 1 to the experimental 
results of Boycr (1970) and Boyer & Davics (1982) with good qualitative agreement 
between the respective flow patterns for similar parameter values. The numerical 
results also matched thc experimental measurements of the length of the standing 
eddies in cases where the flow had separated. It was noted that the eddies which form 
behind the cylinder initially tend to spin down with the flow inside the eddies 
becoming almost stagnant a t  steady state owing to the effects of Ekman suction. In  
some cases, flow which initially separates may become reattached for the same 
reason. However, the study by Matsuura & Yamagata did not provide diagnostics 
suitable for the detailed analysis of the separated rcgion of the flow or for comparison 
with the work of Page (1987). 

Page (1987) studied the form of the inviscid interior flow once separation has 
occurrcd and included the effects of the Ei layer on that flow using techniques 
analogous to those used for Kirchhoff flows in a non-rotating frame. The rotating- 
flow equivalents of the Euler equations were used to derive a modified Bernoulli 
equation and the resulting free-streamline problem was solved numerically to 
calculate the shape of the separated region. In particular, i t  was shown that in an 
inviscid flow the vorticity decays exponentially along streamlines as a Consequence 
of Ekman suction and that any region of fluid bounded by closed streamlines (such 
as the separation bubble) will be stagnant to leading order. The numerical solutions 
indicated that the length of the bubble will increase monotonically with the 
parameter h = Ro/2Ei once A > !j. Comparison with Boyer & Davies’ (1982) 
experiments showed that while qualitative agreement was good, the calculated 
bubble lengths did not agree with the experimental measurements for large A. This 
was thought to be due to viscous effects, neglected in the numerical solution, which 
are analogous to the O(R-&) modifications considered by Smith (1979) in his study of 
the non-rotating, laminar flow past a cylinder a t  large Reynolds numbers. 

Page (1987) also considered highcr-order effects on the flow due to the Ei laycrs and 
proposed the form of the separated flow as illustrated in figure 1.  Region I here is the 
irrotional, effectively inviscid, interior flow, region I1 is inside the separation bubble 



Separated jlow past u cylinder in a rotating frame 119 

/ - 
FIGIJRE 1 .  Schematic diagram of the form of the separated flow as proposed by Page (1987) 

and region 111, represents the Ei layer on the surface of the cylinder. The region 
behind the cylinder is bounded by two free shear layers (region 111,) of thickness Ef, 
which lie along streamlines for the interior flow. These 'free streamlines ' separate 
from the cylinder a t  the point S ,  the position of which is dependent on A ,  and move 
toward the front of the cylinder with larger A,  and join together in a cusp a t  E ,  
further downstream. The region 111, forms the wake of the bubble and is also of 
thickness Ef. 

Within the separated region, Page (1987) followed Smith (1985) and proposed that 
part of the free-streamline flow (region 111,) turns by 180" at  E and flows toward the 
cylinder along the line of symmetry to form a jet (region 111,) which expels fluid into 
the separated region, causing a flow of O(Ea) in this region. (Similar reversed jets a t  
reattachment ofa  boundary layer have also been proposed by Messiter, Hough & Feo 
(1973) and Daniels (1979) in studies of laminar boundary layers in supcrsonic flows.) 
The jet (111,) hits the cylinder and forms another shear layer (region 111,) on the back 
surface of the cylinder and fluid is thus transported toward the separation point 8, 
a t  which point the jet would turn and join the lower part of region 111,, proceeding 
along to the reattachment point E to start the process again. 

In this paper, the rotating, viscous flow equations for the cylindrical configuration 
are solved using a numerical technique and the resulting flow patterns are analysed 
and compared to  Page's (1987) inviscid model. In  particular, his proposals regarding 
the detailed structure of the separated flow, described above, are investigated in the 
limit as E is decreased. 

2. Formulation 
Consider the uniform flow, with speed U* a t  infinity, past a circular cylinder of 

radius 1* and axis parallel to R ,  placed between two infinite parallel plates a distance 
d* apart. The entire system is rotating with a uniform angular velocity Q* = Q*R 
and the axis of rotation is aligned with the axis of the cylinder. This configuration 
is illustrated in figure 2. 

The equations of motion for the flow of a homogeneous, viscous fluid of constant 
density p* and kinematic viscosity v*, relative to the rotating frame, are written in 
terms of the non-dimensional quantities, 

x = x*/l*,  u = u*/lJ*, t = t*/T*, d = d* / l* ,  (2.1) 

where x = (xLy, z )  are coordinates measured relative to the rotating frame with z 
aligned with k, u = (u, v, w) is the scaled velocity and T* is a characteristic timescale 
for the motion. The coordinate x is chosen to  lie in the direction of the flow at infinity. 
The pressure is combined with the centrifugal contribution to form the reduced 
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FIGURE 2 .  Geometrical configuration for the flow past a cylinder in a rotating frame. 

pressure P* = p* -1 2P *2sZ*2r*2 , which is then scaled by p*l*sZ*U*. The resulting non- 
dimensional equations are thus 

(2.2) 
au 
at 

~ ’ - + R o ( u * V ) U + ~ L  x u = -VP+d2E’V2U, 

v * u  = 0, (2.3) 

where 1‘ = (T*Q*)-’ and the Rossby and Ekman numbers are defined by 

(2.4) 

respectively. The boundary condition, u = 0 is applied on both the cylinder surface 
and z = 0, d.  

Considering E and Ro to be small, the leading-order terms on a long timescale, 
T* + sZ*-’ are 

2 L x u , = - V P  (2.5) 

which implies that the flow is geostrophic and depth independent to lowest order. 
Since the flow is two-dimensional, a streamfunction y? can be defined as 

in the usual way. To determine +, it is most convenient to take t i e  curl of (2.2) 
yielding the equation for the z-component of vorticity 5 = (V x u ) - k  = Vgll., 

aw 
aZ = (2+Ro<)-+d2EVg<,  

where Vt is the horizontal Laplacian. 
For the flow bounded above and below by parallel plates, the Ekman compatibility 

conditions (see, for example, Moore 1978) are w = &Ef< on z = 0 and w = -&Ef< on 
z = d and hence, using that 6 in (2.7) is independent of z ,  
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For Ro = O(Ei)  and choosing T = (T*Q*)-' = 2Ei, appropriate to the timescale of 
Ekman-layer dissipation, the governing equations are, to leading order, 

where 

V;$ = c, (2.10) 

Ro 
2Ef 

h = - = O(1) (2.11) 

and 6 = d(@) t  < 1, (2.12) 

are the key parameters describing the flow. The viscous term S2V2[ in (2.9), while not 
of leading order, is retained in the spirit of a composite expansion, since it becomes 
significant in the boundary-layer region. All other terms of this order are ignored 
since they remain relatively small everywhere and as a result, the asymmetry noted 
in Boyer & Davies (1982) and reproduced by Matsuura & Yamagata (1985) is not 
present in this study. The boundary conditions satisfied by (2.9) and (2.10) are $ = 
a$r/an = 0 on the cylinder and [ + O ,  a$/ay+- 1 far from the cylinder. Owing to  the 
symmetry noted above, only the flow for y 2 0 will be considered from this point. 

Equations (2.9) and (2.10) are very similar to those for the equivalent non-rotating 
flow, (2.9) having only one additional term ( - 5 )  on the right-hand side which arises 
through the effect of Coriolis forces and represents viscous dissipation by Ekman 
friction. 

3. Numerical method 
The governing flow equations were solved using a finite-difference technique, but 

first the exterior of the cylinder was mapped conformally into the upper half plane 
using the Joukowski transformation w = $(z+ l / z )  where z = x+iy is the physical 
plane and w = .&+ iq represents the computational domain. This transformation 
simplifies the application of the boundary conditions since the surface of the cylinder 
is mapped to the 161 < 1 section of the (-axis and it also provides better resolution in 
the far field than, for example, the polar coordinates used by Matsuura & Yamagata 
(1985) to produce their numerical solutions. Adequate resolution far from the 
cylinder, particularly in the downstream direction, is important since the purpose of 
this study is to examine the detailed structure of the separated region of the flow. 

In order to resolve the thin, viscous Ei layer on the cylinder without using 
excessive computing time, (2.9) and (2.10) were evaluated on a stretched grid which 
concentrates the grid points near the solid boundary and also near the singular points 
w = ( & 1 , O )  of the Joukowski transformation. Two separate stretching functions are 
required: one to  stretch the vertical coordinate q to provide adequate resolution 
within the boundary layer (which is of scale thickness 6), and the other to give a 
uniform spacing around and close to the cylinder, by stretching the horizontal 
coordinate (. Far from these critical regions, the grid becomes approximately 
uniform. 

Considering first the horizontal coordinate, let si, for i = 0,1, ..., M be a set of 
uniformly spaced grid points on 0 < s < 1. The si are divided into three regions : the 
points in front of the cylinder (0 < si < sF), those on the cylinder (sF < si < sB), and 
those behind it (sB < si < 1 )  where sF and sB are the grid points a t  w = (f 1 , O ) .  
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The grids in each of these three regions are transformed by 6, = -c*osh (q ,+$n),  
f;, = sin (q , )  and f;, = cosh (q,-$n) respectively where 

a,s,+b,/(l-s,)+c,  forO<s,<s, ,  

for sB Q s, < I .  
Qz = a 2 % + c 2  for sF Q s, < sB. (3.1) I a, 5, + b,/s, + c3  

and -[,,, < 6, Q f;,,,. The three functions are made continuous a t  sF and sB by 
applying matching boundary conditions on adjacent functions and solving for the 
constants a,, . . . , c3.  It is also possible to adjust the proportions of the total number 
of grid points that will be placed in each of the three regions. Typically, 40% of the 
points are placed on the cylinder and 30% each side. 

The vertical coordinate is transformed by a straightforward exponential stretching 
function, 

where t, are evenly spaced grid points with 0 < t j  < 1 for j = 0,1,  .... 3, 7 is the 
stretched coordinate, 0 Q 7 Q rmax, and el, 8,, 8, are positive constants which can be 
adjusted to fine-tune the stretching function, provided 8, + 8, + 8, = 1 .  The function 
(3.2) is dependent on the boundary-layer thickness, S, so grid points will be placed 
within the boundary layer to enable adequate resolution of the velocities in that 
region. In  general, 8, = 8, = 8, = + was found to give satisfactory results, with 15-20 
grid points within the boundary-layer region for typical values of 6. As a consequence 
of the conformal mapping, the stretching function also provides fine resolution close 
to the axis of symmetry so that the flow near the reattachment point and wake is 
resolved accurately. In contrast, the polar grid used by Matsuura & Yamagata (1985) 
provides poor resolution in these regions. 

For most of the results presented in this paper 160 points were used in the 
horizontal direction and 80 in the vertical. When h was large (> 8, say) and 6 small 
(<  0.1) the separation bubble is advected far downstream and a finer grid (200 x 100) 
was needed. For other parameter ranges, no significant improvement in the results 
was noted when the finer grid was used. 

The vorticity equation (2.9) was solvrd using an ' alternating directions implicit ' 
method (see. for example, Roache 1982) and the block-tridiagonal matrix obtained 
from discretizing the Poisson equation (2.10) was inverted using the SLKTRI 
routine which uses cyclic reduction (Swartztrauber 1974). Timesteps of 0.05-0.1 were 
used and the scheme was initialized using the irrotational flow solution for the 
interior region. In all other respects the numerical scheme is similar to that used by 
Becker & Page (1989) to solve the equations for the viscous flow in a rotating sliced 
cylinder. 

4. Flow trends 
Solutions of the flow equations were thus obtained for a range of values of the two 

key pararnetcrs 6, the scaled boundary-layer thickness defined in (2.12). and h 
defined in (2.11), which represents the effect on the flow due to the nonlinear 
advection terms. 

Figure 3 shows the streamlines and vorticity contours for values of h = 0. 1 . 2 , 1 .  
and 8 with fixed 6 = 0.1. The contour interval for the streamline plots is constant 
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FIGURE 3. Contours of the streamfunction (left) and vorticity (right) for 6 = 0.1 and (a) A = 0, ( b )  
h = 1, (c) A = 2 ,  ( d )  A = 4, and (e) h = 8. In each case, the vorticity contour interval is A< = 0.5 
everywhere and for the streamline is A$ = 0.25 except for I$l ,< 0.05 where it is 0.01. 

exccpt near the cylinder (and near the free-streamline in cases for which the flow has 
separated) where the contour interval has been reduced in order to show some fine 
details of the flow. The most obvious trend in these plots is the increasing asymmetry 
about x = 0 of the flow patterns with increasing A. When h = 0 the governing 
equations are linear and advection has no effect on the flow. The streamlines for this 
value of A ,  shown in figure 3(a ) ,  are symmetric and very similar to those for the 
potential flow problem. The corresponding vorticity plot shows that vorticity is 
concentrated in the boundary layer with only a small amount being diffused a small 
distance from the cylinder into the main flow. When h = 1,  the streamlines, in figure 
3 ( b ) ,  arc barely asymmetric but the vorticity has already been significantly affected 
by advection with a noticeable thickening of the boundary layer on the downstream 
side of the cylinder. The same trend was noted for the attached flow by Page (1985). 
With h increased to 2, vorticity has been advected away from the boundary and 
forms a well-defined wake downstream, although separation has not occurred in the 

5 FLM 234 
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FIGURE 4. Contours of the streamfunction (left) and vorticity (right) for h = 2 ,  and ( a )  6 = 0.05, ( h )  
6 = 0.1, (c) 6 = 0.2, and (d )  6 = 0.4. The contour interval for the vorticity is A[ = 1.0 for (a )  and 
AC = 0.5 otherwise. Streamline contour intervals are the same as for figure 3. 

sense that reversed flow exists along the cylinder. (For this value of 6 the boundary 
layer separates, in that sense, when A x 2.1.) The plots for h = 4 and h = 8 show 
clearly that the flow has separated and in each case the formation of a separation 
bubble behind the cylinder is evident in the streamline plots of figure 3 ( d , e ) .  
The length of this bubble for h = 8 is approximately double that for h = 4 and the 
point of separation for h = 8 has moved further toward the front of the cylinder 
compared to the h = 4 case. Both of these trends were also noted by Page (1987) and 
arc discussed further in the following section. Inside the separation bubble, it is 
evident that the flow is relatively slow with some reversed flow present, notably in 
the case h = 8. 

A further series of streamlinc and vorticity contours is shown in figure 4. In this 
case, the value of h = 2.0 is held constant and 6 is varied. Again, the contour 
intervals are constant except very close to the cylinder in the case of the 
streamfunction plots. These flow patterns are not greatly affected by the change in 
8 ;  certainly not to the extent that  variations in h affect the flow. Thc effect of Ekman 
suction relative to horizontal diffusive effects and the resulting dissipation of 
vorticity means that the boundary-layer does not separate until the effective 
Reynolds number Rcc RoIE is about 700, or S x 0.05 for this value of A. The 
streamlines thus show very little variation from the low-Reynolds-number non- 
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FIGURE 5.  Plots of the skin friction for values of 8 = 0.1 and h = 0, 1, 2 ,4 ,  8. 

rotating flow patterns until 6 is small enough for separation to occur. The vorticity 
contours show that vorticity is diffused further into the interior flow for larger 6 
confirming that the thickness of the boundary is proportional to and of the same 
magnitude as 6. The effect of advection in sweeping the diffused vorticity downstream 
remains relatively constant for each of the plots in figure 4, as would be expected 
since h is held constant. 

A further indicator of the trends in the flow for varying values of the key 
parameters is the ‘skin friction ’ which is the shearing stress on the surface of the 
cylinder and is defined by 

r = K )  . 
cylinder 

If the flow separates, the point of separation can be determined by the condition that 
the skin friction vanishes there, since by the definition used here, the separation point 
is the point a t  which the zero streamline separates from the surface of the cylinder. 
The velocity gradient normal to the surface will then be of opposite sign to that 
occurring before the separation point. 

Figure 5 shows a series of plots of the skin friction as a function of x for a range 
of h values and fixed 6 = 0.1. The parameter values used for figure 5 match those for 
the contour plots in figure 3. For A = 0, the skin friction is symmetric about the y -  
axis and has the smallest maximum magnitude. With increasing A, the maximum 
value of T increases also since the boundary layer is becoming thinner on the 
upstream side of the cylinder (see, for example, figure 1 in Page 1985). On the 
downstream side of the cylinder the plots show a marked trend, with the skin friction 
decreasing rapidly with larger A and becoming negative for h = 4 and h = 8. These 
two h values are the only ones for which separation has occurred for the value of 6 
shown, although the vorticity field in figure 3 ( b )  does suggest that  the shear layers 
are not fully attached to the cylinder surface. 

It appears both from the plots in figure 5 for h = 4 and A = 8 and from figure 3 that 
the boundary layer separates at a point which moves closer to the front of the 
cylinder as h increase. This is demonstrated more clearly in figure 6 which shows the 
separation point s, in terms of the arc length s, measured from the front stagnation 
point, for a range of parameter values. (As an indication of the dependence of the 
numerical results on the resolution used, calculations were also carried out for several 
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showing the variation of the separation point for varying h with S = 0.05: 
0, 6 = 0.1 ; x , S = 0.2 from the present study and 0 ,  6 = 0 from Page (1987). 

0 2 4 6 8 10 12 

A 

FIGURE 7. Plot of the h versus 6 parameter space : 0, boundary layer has separated ; x , boundary 
layer not separated ; ---, necessary separation criterion predicted by Walker & Stewartson (1972) 
and Page (1985) ; -, separation criterion based on the numerical results of the present study. 

different grids, and the difference in s, between the coarsest grid (80 x 40) and the 
finest (I60 x 80) was only 1-3 "?n). The predictions from Page (1987) for S = 0 are also 
shown. 

On the basis of figure 6, the separation point moves monotonically towards the 
front of the cylinder for increasing A,  with S fixed, and also for decreasing 6. with h 
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fixed. In fact, the separation point appears to  be approaching a limit as h + 00,  

consistent with the prediction of Page (1987) t h a t  the separation point should 
approach s z 0.96 as h + 00 for S = 0. Page (1987) also suggests that the separation 
point moves towards the rear of the cylinder owing to viscous effects such as the O ( d )  
modifications considered by Smith (1985, 52.4) and this accords with figure 6 which 
shows a similar trend for increasing S. 

A plot of the character of the flow as a function of h and S is shown in figure 7 .  Each 
numerical experiment is shown with a ‘ 0 ’ or ‘ x ’ indicating whether or not the 
boundary layer has separated, in the sense defined earlier. The dotted line, h = a is 
the necessary criterion for boundary-layer Separation to occur, as derived by Walker 
& Stewartson (1972) and Page (1985). The solid sketched line shows the predicted 
sufficient separation criterion as a function of 6, based on the numerical results 
presented here. The solid line should approach the line h = t more rapidly than the 
numerical results indicate for 6+0 although this is possibly due to poor numerical 
resolution of the separated shear layer for small values of S causing inaccuracy in the 
results for 6 = 0.01 and S = 0.025. Alternatively, the inconsistency could be due to 
separation, in the sense of a shear layer leaving the cylinder surface, occurring a t  a 
smaller value of h than that at which T first vanishes on the cylinder. A similar 
difficulty in identifying whether separation has occurred in a laboratory study was 
noted by Boyer & Davies (1982). 

5. Comparison with Page’s (1987) model 
Comparing the results of the present study with the free-streamline calculations of 

Page (1987) demonstrates a good qualitative agreement in the form of the separated 
flow. Some differences in the two sets of results are apparent and these may be 
explained in terms of the viscous effects which are not included in Page’s model. 

In the study of the inviscid flow, 6 is effectively zero, and the flow separates for all 
h > +, whereas in the viscous model S is finite and so, not only will the flow separate 
a t  higher values of h than the inviscid flows, but also the flow patterns will be altered 
somewhat owing to viscous effects. One immediately obvious effect of viscosity is the 
smoothing of the streamfunction a t  the reattachment point - in the inviscid case, the 
free-streamlines form a cusp a t  the point of reattachment. Another difference is that 
separation occurs a t  a point closer to the front of the cylinder in the inviscid case and 
this agrees with figure 6 which indicates that the separation point moves forward 
with decreasing 6 values. 

The separation bubbles appear to be longer in the inviscid case compared to the 
equivalent viscous plots and this may be confirmed by examining the data plotted 
in figure 8 which shows calculated bubble lengths from both Page (1987) and the 
present study for various S values. The values of E shown in this diagram are defined 
to be the distance from the rear of the cylinder to the point where the separation of 
the two streamlines 1c. = k0.02 is 0.2. This definition, illustrated in figure 8, is based 
on that in Boyer & Davies (1982) while the values of (xe- 1 )  also shown represent the 
‘true ’ bubble length, that is, the point a t  which the zero streamline reattaches. (Note 
that the values of E shown here from the inviscid study are actually slightly different 
from the values shown in figure 5 of Page (1987) since the latter values were 
calculated from the point a t  which the bubble half-width is 0.2 rather than 0.1 as 
defined here.) 

Looking a t  the four sets of data for the bubble length E ,  i t  is apparent that  E 

increases approximately linearly with h in each case and that E also increases with 



128 A .  Becker 

0 2 4 6 8 1 0 1 2  
h 

FIGURE 8. Plot of the ‘bubble length’ E against A obtained from Page (1987), indicated by the 
symbol and the corresponding values of (xe- 1) indicated by 0. Results of the present study 
shown are: bubble lengths for A, S = 0.05: x , S = 0.1 : +, 6 = 0.2,  and the corresponding values 
of (xe- 1) for 0 ,  S = 0.05, *, S = 0.01, 0 ,  6 = 0.2. The definition of E is also illustrated. 

decreasing S values. For the smallest value of S shown, 8 = 0.05, the c values (A) are 
very close to the inviscid values (0).  In  fact, for small A,  all the E values show 
reasonable agreement -for h = 1 all the c values coincide. With increasing A,  the 
inviscid bubble lengths diverge from the viscous values, increasing a t  a greater rate. 
(Note that because E is measured, as shown in figure 8, based on the @ = -0.02 
streamline, it is possible to obtain a ‘ bubble length’ for unseparated cases.) 

The values of (xe- 1) shown on figure 8 are also interesting. In Page (1987) it is 
clear that (xe- 1) was greater than E ,  however the numerical results here show that 
the zero streamline joins the axis before c. There are two possible reasons for this: 
first, c here is based on the @ = -0.02 streamline which would be to the right of the 
@ = 0 streamline near reattachment. Secondly, the O(6) flow within the separated 
region will significantly affect the position of the @ = 0 streamline, since $ is O(S) 
within both the separated shear layer and the separation bubble. 

Figure 9 shows the tangential velocity measured along the streamline @ = -3.0 
which is in the interior (inviscid) region of the flow, just outside the boundary layer. 
The fluid outside the boundary layer accelerates rapidly around the front face of the 
cylinder attaining its maximum value near the top of the cylinder for A = 0 , 1 , 2  and 
for h = 4,8,  just before the separation point. The velocity then decreases roughly 
linearly to its minimum point which corresponds to either the rear stagnation point, 
for the unseparated cases, or the zero streamline reattachment point, for the 
separated cases h = 4,8. The fluid then increases in velocity to approach the free- 
stream velocity as s + 00. These plots are similar in character to the tangential 
velocities along @ = 0 shown in figure 4 of Page’s inviscid study. This similarity is 
expected since the inviscid solutions represent the flow only in the interior, that is, 
outside any regions where viscous effects are important such as the boundary layer. 
Particularly notable is the linear decrease in velocity from the separation point to the 
reattachment point in the cases h = 4 and h = 8 and the change in gradient at the 
reattachment point. In the present study, the velocity gradient is not discontinuous 
at the reattachment point (as i t  is in the inviscid study) nor is the velocity zero a t  
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FIGURE 9. Tangential velocity along the streamline $ = -0.3 for S = 0.1 and varying A values as 
shown. The arc-length ( 8 )  is measured from the upstream boundary a t  r = - 8. 

the front of the cylinder due to the smoothing effects of viscosity and the presence 
of the boundary layer. 

6. Detailed structure of the separated flow 
In figure 10, a series of flow-speed profiles along coordinate lines in the conformally 

mapped flow are shown for S = 4, together with diagrams showing the positions of 
the profiles. The first profile shows the velocity changing rapidly across the boundary 
layer from zero on the cylinder to attain the free-stream velocity in the interior 
region of the flow. The shear across the boundary layer is greater for S = 0.05 (dashed 
lines) since for this value of 13 the boundary layer is thinner. Profiles 2 4  show a 
similar increase in velocity across the free shear layer although the gradient is not 
quite so steep since the shear layer tends to thicken with distance downstream. 
Below the dots indicating zero velocity on these cross-sections, the profile is crossing 
the separation bubble and here the velocity is negative and very small in magnitude, 
increasing t o  zero on the cylinder surface. On the seventh profile, outside the 
separation bubble, the velocity is greater than zero everywhere. 

These velocity profiles do not support the structure for the separated flow 
suggested by Page (1987) which included a jet of fluid (identified as HI4 in figure 1) 
along the line y = 0 resulting from some of the fluid in the free shear layer turning 
180" a t  the reattachment point and proceeding in towards the cylinder. The profiles 
in figure 10 show no evidence of such a jet but rather, suggest that  as the fluid in the 
free shear layer decelerates away from the separation point, it first entrains fluid 
from inside the separation bubble and then expels this fluid back into the bubble as 
the shear layer decelerates towards the reattachment point. Thus a region of slow 
moving, reversed flow is set up inside the bubble as shown in figure 11 (a ) .  This flow 
is of O(S),  as would be expected of a flow forced by boundary-layer entrainment or 
detrainment. In contrast, Page (1987) suggested that the net flow inside the bubble 
should be as shown in figure 11 ( b ) ,  with the inflow from the line y = 0 and the 
cylinder arising from the outflow of the shear layers 111, and 111, in figure 1. 
However, there is little evidence in the numerical solutions to support this proposal. 
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(0 )  

FIGURE 10 ( a )  Velocity profiles along lines of constant 2 for h = 4.0 and -, 6 = 0.1 and ---, 
S = 0.05. The dot on each profile indicates the point a t  which the velocity is zero and the dashed 
lines connecting the dots indicate the approximate position of the shear layer. The diagrams below 
show the positions of the profiles in relation to the cylinder and the separated region of the flow 
for ( b )  6 = 0.1 and (e) S = 0.05. 

FIGURE 11. Structure of the net flow inside the separation bubble according to (a )  the present 
study and ( b )  Page (1987). 

7. Conclusions 
The viscous model presented in the preceding sections compares well with 

published experimental results (Boyer 1970; Boyer & Davies 1982) and with othcr 
numerical calculations (Matsuura & Yamagata 1985). Comparison with an inviscid 
model (Page 1987) is also favourable taking into account the variations which are the 
expected result of viscous effects and does suggest that the theory in that paper does 
represent a plausible limit for the flow as S + O .  In particular, the predictions of the 
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length of the separation bubble, the position of the separation point and the inviscid 
velocity on the outer edge of the free shear layer are all consistent with the numerical 
results presented here. A model of the viscous flow in a different geometrical 
configuration has been studied also (Becker 1990) and the flows resulting from that 
model show similar trends although with some interesting variations due to  the 
differing geometry. 

I n  considering the detailed structure of the separated flow past the cylinder, the 
viscous model has been shown to be inconsistent with the structure proposed in $9 
of Page (1987) which was based, in part on the proposed (but as yet unproven) 
structure for the non-rotating case put forward by Smith (1979, 1985). (It should be 
noted, however, that  the dynamics of the rotating case are altered by Ekman suction 
which is not present in the non-rotating flows so the conclusions drawn here will not 
necessarily carry over to the non-rotating flows.) It appears from results presented 
here that the structure of the flow in the separated region is actually simpler than 
that suggested by Page, but the precise form of this structure and how it matches in 
with the free shear layer 111, will be considered in a later paper (Page & Duck 1990). 
Further evidence on this question is also provided by Page & Eabry (1989) who 
conclude that jet flows, such as that in region 111, of figure 1,  lose all of their mass 
and momentum after a finite distance and consequently that region III,, if it exists, 
may terminate a short distance from the reattachment point. 

The author wishes to thank Dr M. A. Page for suggesting the problem and for 
many helpful discussions during its development. 
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